

Progress on Assessment of NSTX Divertor Particle and Heat Fluxes

Rajesh Maingi

Oak Ridge National Laboratory

H. Kugel^a, R. Raman^b, V. Soukhanovskii^a, and the NSTX Team

a) Princeton Plasma Physics Laboratory

b) University of Washington

ALPS/APEX April Meeting Grand Canyon, CO April 7-11, 2003

NSTX Fueling Observations

- NSTX H-modes suffer uncontrolled density rise
 - Due to limited fueling control from center stack injector?
- NSTX L-modes also exhibit density rise
 - No center stack injector used
- -> NSTX generally has high recycling
- Recycling control needed, but where are particles and power?

NSTX Explores Low Aspect Ratio (A=R/a) physics regime

Parameters Design Achieved

0.85m Major Radius

Q.67m

Minor Radius

1MA

1.5MA

Toroidal Field

0.6T

0.6T

Heating and Current Drive

NBI (100keV) 5MW

7 MW

RF (30MHz)

6MW

6 MW

Wall Conditioning:

350 deg. bakeout of graphite tiles Regular boronization (~3 weeks) **Helium Glow between discharges** Center stack gas injection

Load-and-Dump Gas Injectors Have Different Flow Characteristics and Delay Time

Uncontrolled (non-disruptive) density rise in long pulse H-modes

Density also rises faster than NBI fuel rate in long pulse L-modes

Classic Particle Balance Model used to Estimate Particle Containment Time

 Assuming constant NBI and gas source term, time dependence of plasma content has analytic solution

$$\frac{dN}{dt} = \eta_{NBI} S_{NBI} + \eta_{gas} S_{gas} - \frac{N}{\tau_p}$$

where
$$\tau_p^* = \frac{\tau_p}{1 - R_{eff}}$$

$$N(t) = N_o \exp{-\frac{t}{\tau_p^*}} + \tau_p^* (\eta_{NBI} S_{NBI} + \eta_{gas} S_{gas}) 1 - \exp{-\frac{t}{\tau_p^*}}$$

Particle Containment Times ~ 0.2-0.3 sec. in NSTX with constant gas fueling rate model

Classic Density Rise Model Can Be Modified with Realistic Time Dependencies

 Assuming time dependent gas source term; time dependence of plasma content has analytic solution

$$\frac{dN}{dt} = \eta_{NBI} S_{NBI} + \eta_{gas} S_{gas}(t) - \frac{N}{\tau_p}$$

where
$$S_{gas}(t) = S_{gas,0} \exp -\frac{t}{\tau_{gas}}$$
; $\tau_{gas} \sim 0.55 \sec t$

$$N(t) - N_o = \eta_{NBI} S_{NBI} \tau_p^* - N_o \quad 1 - \exp(-\frac{t}{\tau_p^*}) + \frac{\eta_{gas} S_{gas} \tau_p^* \tau_{gas}^*}{\tau_{gas} \tau_p^*} \exp(-\frac{t}{\tau_{gas}}) - \exp(-\frac{t}{\tau_{gas}}) - \exp(-\frac{t}{\tau_{gas}})$$

Particle Containment Times ~ 0.5 sec. in NSTX with more realistic gas fueling rate model

In all models, $\tau_p^* \sim 0.5 \text{ sec} >> \tau_E$, i.e. $R_{eff} > 0.5$ >> NSTX is almost always high recycling with NBI

M NSTX

• Solutions to More Realistic Dependencies of Fueling Terms in Progress, i.e.

$$\tau_p^*(t) = \tau_{p,0}^*(1 + \alpha t)$$
 (some L –modes with increasing confinement or recycling)

$$S_{gas}(t) = S_{gas,0}(1 + \alpha t)$$
 (source increasing/decreasing with time)

$$\eta_{gas}(t) = \eta_{gas,0} \exp -t/\tau_p^*$$
 (fuel efficiency decreasing with time)

$$\eta_{gas}(t) = \eta_{gas,0} / N(t)$$
 (fuel efficiency decreasing with density)

Where are particles and power in NSTX divertor?

- D peaks near inner and outer strike points, inner ~ 3x outer
 - Ratio reverses during power excursion -> inner probably detached
 - Most particles on outer side -> consistent with module location
- Heat flux always peaks near outer strike point
 - inner strike point peak heat flux and power < 1/3 outer values
 - > consistent with module location

 \mathbf{D}_{α} profile normally peaks near Inner Strike Point, but reverses during heat pulse

Reversal of in/out
D profile during
heat pulse is
consistent with
inner side being
detached

Similar situation in pre-cryopump days at DIII-D

Reduced recycling will probably reattach ISP, so D will go down

Likely more particles near OSP; need LP data to confirm

Peak heat flux always peaks near outer strike point in lower-single null configuration

• Good power accountability: $P_{div}^{in+out} \sim 70\%$ of P_{SOL}

Progress on Assessment of NSTX Divertor Particle and Heat Fluxes

- NSTX is always (99%) in moderate-high recycling state and suffers from uncontrolled density rise
 - L-mode density increases with NBI fueling; no need for gas puffing
 - H-mode density increase > NBI fuel rate; $_{p}$ * ~ 0.2-0.5 sec
- -> Density control needed, but where are particles and power?
- D peaks near inner and outer strike points, inner ~ 3x outer
 - Ratio reverses during power excursion -> inner probably detached
 - Most particles on outer side -> consistent with module location
- Heat flux always peaks near outer strike point
 - inner strike point peak heat flux and power < 1/3 outer values
 - > consistent with module location
- UEDGE modeling in progress; DEGAS-2/TRANSP to
 follow to estimate effect of lower recycling

Backup: H-mode slides

Different Gas Puffers Light up Different Plasma Regions (unfiltered)

H-mode Plasmas Achieved Long Pulse, Owing to Low Volt-Second Consumption Rate

H-mode Plasmas Achieved High β_t , Owing to Reduced Pressure Peaking Factor

Max
$$\beta_T = 31.5\%$$

 $\beta_N^{\text{max}} \sim 6.2$

$$\beta_T = 2\mu_0 /B_0^2$$

L-H power threshold and ELM studies reveal differences with conventional aspect ratio tokamaks

